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In the book of Vasil’ev [l ] the problem is posed of investigating the 
two-dimensional or two-parameter helical motion, which depends on the 
two cylindrical coordinates r, I as determined by the equation for the 

l 

stream function 

by means of which the components of the velocity are expressed thus: 

cp = 
1 a+ 

--9 

i- dz 

(1) 

(21 

The motion is considered in the region 0 < t < ~0 and 0 < r < (10 with 
boundary conditions 

+ (z, 0) =.= 0, + (0, rf = $0 = const (3) 

Vasil’ev obtains the solution in two forms. The first form is 

Here for x < K. \/A* - k2 is taken as i \/ k2 - h2 and consequently 

I& (,Zl/z=z ) = cos zl/kz - A2 

It is stated that the integral (4) can take a simple form, if formula 
(22) on p. 35 of the book [ 2 I is used. This formula for v = 0 can be 
written in the form 
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00 -_ 

.4 (r, 2, k) = - Re J1 (1.r) 
\ 

esp (- z I/i\2 -k* ) 
,._ di. = $ (sin lie - sin k\/z2$-r’) (5) 

0 
V ?.a-- k2 

taking the root \/ x2 - k* equal to i d IL’ - x2 for x < k. It is possible 

also to assume 

4 (r, z, k) = 
I 

J1 (1.r) j (A, z, k) di. 

0 

where 

f (i., z, 12) = 

’ sin :vk2 - A2 

fk2 - ?\2 

exp (- 2 J/A2 - k*) 

i/ ?.2 - k2 

(0 < A < k) 

(k<).<=) 

Now I/J is easily expressed by means of A(r, z, k): 

and, as a result it is easy to express it in the form 

z cos kJf/za + r2. 
I 

0 = 4% cos kz - 
jf22.t 

1-cos I: -k sin k1/c2 + r2 
s 

de (8) 
0 

It is easily shown that conditions (3) are satisfied, so that $I is a 

bounded function. For k = 0 we have 

which describes the stream function 

potential flow. In this expression, 

of the source, i.e. the output. 

for a three-dimensional source in 

$q = - Q/%, where Q is the strength 

For I/& = 0, we obtain 
z 

$=--_(I--mskz-k *sinkJfcv da) 
s (109 
0 

Thus, for the circumferential velocity v+ in Conformity with (31, we 
have 

C 
L 

VP, =- r Cos kz j- k sin RVcz + ra,&- 
s 
0 

> 

ing for $ from (8) for this case, into equation ( 

for v 
4 

: 

Subst itut 

the equation 
11, we obtain 
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(IX) 

We see that equation (11) describes a solution of this equation which 

would be characteristic of a potential flow (k = 0) in which 

C 
‘Q = - r 

(CL) 

This corresponds to an infinitesimally thin vortex line along the 

axis, where r is the circulation of the velocity along a closed curve 

embracing the axis z [ 1 1. 

I 2 3 

Note: 0. F. Vasil’ev obtained another expression for $I: 

Comparing this expression with (9), and keeping in mind that 

00 
’ sin Azdh 
s h(h2_k2) = - & (1 - cos lcz) 

0 
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(the integral is considered as a Cauchy principal value), we derive the 

following equations 

B (r, I., k) = r 5 ,.$??& 

* 
r- 

Yl(r vh2-hZ:di.=-~~sinkJ/r2+ rz di: 

0 

a2B ’ hsinhz 
c (r, z, k) = - m zz r 

1 
vk2 Y1 (r Jr/c2 - i.2 ) dA = 

0 

’ T12v4y 

In these integrals it is necessary for h > k to replace 

Y1 (r v/k* - 12) 2 K1 (r 1/A? - /cz) 

v k2 - i.2 
with y 

I/i\- 

In the figure, the general form of the flow lines is shown, that is, 

the lines $ = const, for C = 0, k = 1~. In constructing the curves, assist- 

ante was provided by MM. Semchinov and N.V. Volzhanskii. 
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