A POINT SOURCE AND A VORTEX FILAMENT IN A heLICAL CURRENT

(0 TOCHECHNOM ISTOCHNIKE I VIKHREVOI NITI

V VINTOVOM POTOKE)

```
PMM Vol.23, No.4, 1959, pp. 785.789
    P. Ia. POLUBARINOVA-KOCHINA
        (Novosibirsk)
        (Received 5 May 1959)
```

In the book of Vasil'ev [1] the problem is posed of investigating the two-dimensional or two-parameter helical motion, which depends on the two cylindrical coordinates r, ${ }^{x}$ as determined by the equation for the stream function

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial z^{2}}+r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \psi}{\partial r}\right)+k^{2} \psi=-l C \tag{1}
\end{equation*}
$$

by means of which the components of the velocity are expressed thus:

$$
\begin{equation*}
r_{r}=\frac{1}{r} \frac{\partial \psi}{\partial z}, \quad v_{z}=-\frac{1}{r} \frac{\partial \psi}{\partial z}, \quad v_{\varphi}=\frac{k \psi+C}{r} \tag{2}
\end{equation*}
$$

The motion is considered in the region $0<z<\infty$ and $0<r<\infty$ with boundary conditions

$$
\begin{equation*}
\psi(z, 0)=0, \quad \psi(0, r)=\psi_{0}=\text { const } \tag{3}
\end{equation*}
$$

Vasil'ev obtains the solution in two forms. The first form is

$$
\begin{align*}
& \psi=r \dot{\psi}_{0} \operatorname{Re} \int_{0}^{\infty} J_{1}(\lambda r) \exp \left(-z \sqrt{\lambda^{2}-k^{2}}\right) d \lambda- \\
& -k C r \operatorname{Re}\left\{\int_{0}^{\infty} \frac{J_{1}(\lambda r)}{k^{2}-\lambda^{2}}\left[1-\exp \left(-z \sqrt{\lambda^{2}-k^{2}}\right)\right] d \lambda\right\} \tag{4}
\end{align*}
$$

Here for $\lambda<k, \sqrt{ } \lambda^{2}-k^{2}$ is taken as $i \sqrt{ } k^{2}-\lambda^{2}$ and consequently

$$
\operatorname{Re}\left(e^{-z \sqrt{\lambda^{2}-k^{2}}}\right)=\cos z \sqrt{k^{2}-\lambda^{2}}
$$

It is stated that the integral (4) can take a simple form, if formula (22) on p. 35 of the book [2] is used. This formula for $\nu=0$ can be written in the form

$$
\begin{equation*}
A(r, z, k)=-\operatorname{Re} \int_{0}^{\infty} J_{1}(\lambda r) \frac{\exp \left(-z \sqrt{\lambda^{2}-k^{2}}\right)}{\sqrt{\lambda^{2}-k^{2}}} d \lambda=\frac{1}{k r}\left(\sin k z-\sin k \sqrt{z^{2}+r^{2}}\right) \tag{5}
\end{equation*}
$$

taking the root $\sqrt{ } \lambda^{2}-k^{2}$ equal to $i \sqrt{ } k^{2}-\lambda^{2}$ for $\lambda<k$. It is possible also to assume

$$
\left.A(r, z, k)=\int_{0}^{\infty} J_{1}(\lambda \cdot \boldsymbol{r}) j(\lambda, z, k) d\right\rangle
$$

where

$$
f(\lambda, z, k)=\left\{\begin{array}{cl}
\frac{\sin z \sqrt{k^{2}-\lambda^{2}}}{\sqrt{k^{2}-\lambda^{2}}} & (0<\lambda<k) \tag{6}\\
\frac{\exp \left(-z \sqrt{\lambda^{2}-k^{2}}\right)}{\sqrt{\lambda^{2}-k^{2}}} & (k<\lambda<\infty)
\end{array}\right.
$$

Now ψ is easily expressed by means of $A(r, z, k)$:

$$
\begin{equation*}
\psi=r \psi_{0} \frac{\partial A}{\partial z}-k C r \int_{0}^{z} A(r, \zeta, k) d \zeta \tag{7}
\end{equation*}
$$

and, as a result it is easy to express it in the form

$$
\begin{equation*}
\psi=\psi_{0}\left(\cos k z-\frac{z \cos k \sqrt{z^{2}+r^{2}}}{\sqrt{z^{2}+r^{2}}}\right)-\frac{C}{k}\left(1-\cos h z-k \int_{0}^{z} \sin k \sqrt{\zeta^{2}+r^{2}} d \zeta\right) \tag{8}
\end{equation*}
$$

It is easily shown that conditions (3) are satisfied, so that ψ is a bounded function. For $k=0$ we have

$$
\begin{equation*}
\psi=\psi_{0}\left(1-\frac{z}{\sqrt{z^{2}+r^{2}}}\right) \tag{9}
\end{equation*}
$$

which describes the stream function for a three-dimensional source in potential flow. In this expression, $\psi_{0}=-Q / 2 \pi$, where Q is the strength of the source, i.e. the output.

For $\psi_{0}=0$, we obtain

$$
\begin{equation*}
\psi=-\frac{C}{k}\left(1-\cos k z-k \int_{0}^{z} \sin k \sqrt{\zeta^{2}+r^{2}} d s\right) \tag{10}
\end{equation*}
$$

Thus, for the circumferential velocity v_{ϕ}, in conformity with (3), we have

$$
\begin{equation*}
v_{\varphi}=\frac{C}{r}\left(\cos k z+k \int_{0}^{z} \sin k \sqrt{\zeta^{2}+r^{2}} d \zeta\right) \tag{11}
\end{equation*}
$$

Substituting for ψ from (8) for this case, into equation (1), we obtain the equation for v_{ϕ} :

$$
\begin{equation*}
\frac{\partial^{2} v_{\vartheta}}{\partial z^{2}}+\frac{\partial^{2} v_{\varphi}}{\partial r^{2}}+\frac{1}{r} \frac{\partial v_{\varphi}}{\partial r}+\left(i^{2}-\frac{1}{r^{2}}\right) v_{\varphi}=0 \tag{12}
\end{equation*}
$$

We see that equation (11) describes a solution of this equation which would be characteristic of a potential flow ($k=0$) in which

$$
v_{\varphi}=\frac{C}{r} \quad\left(C==\frac{\Gamma}{2 \pi}\right)
$$

This corresponds to an infinitesimally thin vortex line along the axis, where Γ is the circulation of the velocity along a closed curve embracing the axis $z[1]$.

Note: O.F. Vasil'ev obtained another expression for ψ :

$$
\begin{align*}
\psi= & \psi_{0}\left[1+\frac{2 k^{2}}{\pi} \int_{0}^{\infty} \frac{\sin \lambda z d \lambda}{\lambda\left(\lambda^{2}-k^{2}\right)}-r \int_{0}^{\infty} \frac{\lambda \sin \lambda z}{\sqrt{k^{2}-\lambda^{2}}} Y_{1}\left(r \sqrt{k^{2}-\lambda^{2}}\right) d \lambda+\right. \\
& +k C\left[\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \lambda z d \lambda}{\lambda\left(\lambda^{2}-k^{2}\right)}-r \int_{0}^{\infty} \frac{\sin \lambda z}{\lambda \sqrt{k^{2}-\lambda^{2}}} Y_{1}\left(r \sqrt{k^{2}-\lambda^{2}}\right) d \lambda\right] \tag{13}
\end{align*}
$$

Comparing this expression with (9), and keeping in mind that

$$
\int_{0}^{\infty} \frac{\sin \lambda z d \lambda}{\lambda\left(\lambda^{2}-k^{2}\right)}=-\frac{\pi}{2 k^{2}}(1-\cos k z)
$$

(the integral is considered as a Cauchy principal value), we derive the following equations

$$
\begin{gathered}
B(r, \lambda, k)=r \int_{0}^{\infty} \frac{\sin \lambda z}{\lambda \sqrt{k^{2}-\lambda^{2}}} Y_{1}\left(r \sqrt{k^{2}-\lambda^{2}}\right) d \lambda=-\frac{1}{k} \int_{0}^{2} \sin k \sqrt{\zeta^{2}+r^{2}} d \zeta \\
C(r, z, k)=-\frac{\partial^{2} B}{\partial z^{2}}=r \int_{0}^{\infty} \frac{\lambda \sin \lambda z}{\sqrt{k^{2}-\lambda^{2}}} Y_{1}\left(r \sqrt{k^{2}-\lambda^{2}}\right) d \lambda=\frac{z \cos \sqrt{z^{2}+r^{2}}}{\sqrt{z^{2}+r^{2}}}
\end{gathered}
$$

In these integrals it is necessary for $\lambda>k$ to replace

$$
\frac{Y_{1}\left(r \sqrt{k^{2}-\lambda^{2}}\right)}{\sqrt{k^{2}-\lambda^{2}}} \text { with } \frac{2}{\pi} \frac{K_{1}\left(r \sqrt{\lambda^{2}-k^{2}}\right)}{\sqrt{\lambda^{2}-k^{2}}}
$$

In the figure, the general form of the flow lines is shown, that is, the lines $\not /=$ const, for $C=0, k=\pi$. In constructing the curves, assistance was provided by M. M. Semchinov and N. V. Volzhanskii.

BIBLIOGRAPHY

1. Vasil'ev, O.F. Osnovy mekhaniki vintovykh i tsirkulintsionagkh potokov (Fundamentals of the Mechanics of Vortex and Irrotational Flows). Gosenergoizdat, 1958.
2. Bateman, H., Tables of Integral Transforms. Vol. 2, N. Y., Toronto, London (Ed.), 1954.
