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In the book of Vasil’ev [1 ] the problem is posed of investigating the
two-dimensional or two-parameter helical motion, which depends on the
two cylindrical coordinates r, 2 as determined by the equation for the
stream function :
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by means of which the components of the velocity are expressed thus:
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The motion is considered in the region 0 < z < w and 0 < r < ® with
boundary conditions

¢z, 0) =0, 9 {0, r} = g == const {(3)

Vasil’ev obtains the solution in two forms. The first form is
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Here for A < k, V A2 = k2 is taken as i v k% — A? and consequently
Re (e-zyr"z"‘z) = ¢os 2} k% — A2

It is stated that the integral (4) can take a simple form, if formula
(22) on p. 35 of the book [ 2] is used. This formula for v = 0 can be
written in the form
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taking the root v AZ ~ k? equal to i/ k%2 — A2 for A < k. It is possible
also to assume
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Now ¢ is easily expressed by means of A(r, z, k):
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and, as a result it is easy to express it in the form
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It is easily shown that conditions (3) are satisfied, so that ¢ is a
bounded function. For k = 0 we have
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which describes the stream function for a three-dimensional source in
potential flow. In this expression, ¢b = — Q/27, where @ is the strength

of the source, i.e. the output.

For ¢b = 0, we obtain
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Thus, for the circumferential velocity Ve in conformity with (3), we
have

v, =
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Substituting for iy from (8) for this case, into equation (1), we obtain
the equation for vy’
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We see that equation (11) describes a solution of this equation which
would be characteristic of a potential flow (k = 0) in which

C r
v, = — C:_
@ r ( 27:)

This corresponds to an infinitesimally thin vortex line along the
axis, where I" is the circulation of the velocity along a closed curve
embracing the axis :z [11].
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Comparing this expression with (9), and keeping in mind that
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(the integral is considered as a Cauchy principal value), we derive the
following equations
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In these integrals it is necessary for A > k to replace
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In the figure, the general form of the flow lines is shown, that is,

the lines ¥ = const, for C = 0, k = #. In constructing the curves, assist-
ance was provided by M.M. Semchinov and N.V. Volzhanskii.
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